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Abstract 

In this paper, we focus on a sub-problem of 

Arabic text error correction, namely Arabic 

Text Denormalization. Text Denormalization 

is considered an important post-processing step 

when performing machine translation into 

Arabic. We examine different approaches for 

denormalization via the use of language 

modeling, stemming, and sequence labeling. 

We show the effectiveness of different 

approaches and how they can be combined to 

attain better results. We perform intrinsic 

evaluation as well as extrinsic evaluation in the 

context of machine translation. 

1 Introduction 

Arabic Text Denormalization (ATD) is considered 

a sub-problem of Automated Text Error 

Correction (TEC), which is an important topic in 

Natural Language Processing (NLP). TEC can be 

used in many applications such as OCR error 

correction, query-spelling correction, or as pre- or 

post- processing for other NLP tasks, such as 

Machine Translation (MT). For example, the 

training of an MT system that translates between 

Arabic and other languages is typically improved 

by normalizing some of the Arabic letters that 

replace each other depending on context or are 

commonly confused by document authors. When 

translating into Arabic, these letter normalizations 

need to be de-normalized to recover the proper 

forms of the letters. We test ATD in the context of 

a: 

1. Standalone system for correcting common 

Arabic mistakes, which are made by users who are 

not linguistically proficient or who write casually, 

e.g. bloggers, tweeters, etc. It is also helpful for 

users who need an automatic system to help them 

identify such spelling mistakes. 

2. Denormalizing MT output when translating into 

Arabic. We evaluated English to Arabic MT 

output against properly spelled output and we 

achieved a BLEU score of 8.78. Upon inspecting 

the output we saw that normalization during 

training contributed the most to the low score. 

The specific letter normalizations that we will 

address in ATD are as follows: 

1. Restoring �É p� or �å h� from �å h� at the end of a 

word
1
: 

Normalized Denormalized 

 !"  snh  !#  snp (year);  !"  snh (his age)  

$å%  h*h å%$ h*h (this fm.) 

2. Restoring �ì Y� or �í y� from �í y� at the end 

of a word: 

Normalized Denormalized 

ì&'æ wHdY í&'æ wHdy (alone 1
st
 person) 

ì()* qSwY ì()* qSwY (maximum) 

3. Restoring �Å <�, �Ã >�, �Â |� or �Ç A� from �Ç A�:  

Normalized Denormalized 

Çã+  AslAm Åã+  <slam (Islam) 

ÖÑÇ ArD ÖÑÃ >rD (land) 

ÊÇ At ÂÊ  |t (coming) 

á,* qAl á,* qAl (he said) 

These constitute normalizations that are 

commonly performed for machine translation and 

information retrieval.  Another less common 

normalization entails conflating �Ä &�, �Á '�, and �Æ 

}� (Darwish and Ali, 2012). 

The problem is that a normalized form of an 

Arabic word may be denomalized into multiple 

different forms depending on context. For 

example, both �äÂ-* qr|n� (Qur�an) and �äÇ-* qrAn� 

(marriage) are normalized to �äÇ-* qrAn�.  

We used two main approaches to solve the 

problem, namely: using language modeling at 

word and stem levels; and using Conditional 

Random Fields (CRF) sequence labeling to handle 

                                                           
1 We use Buckwalter transliteration throughout the paper 
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cases not disambiguated using language modeling.  

We also examined the use of a CRF labeler in 

isolation of language modeling for comparison. 

The main contributions of the paper are: 

1. Using stemming in conjunction with language 

modeling to improve language modeling 

coverage. 

2. Treating the ATD problem as a sequence 

labeling problem. 

3. Using a combined system to achieve a 

denormalization accuracy greater than 99%.  

2 Related Work 

Spelling correction is a well-studied problem 

(Kukich, 1992; Manning and Schutz, 1999). The 

problem of detecting and correcting misspelled 

words in text usually involves finding out-of-

vocabulary words then finding most similar words 

in a dictionary using some measure of distance 

(Levenshtein, 1966; Wagner and Fisher, 1974). 

Heuristic approaches are also used as in (Shaalan 

et al., 2003) to find replacement candidates for the 

misspelled word by adding or removing letters, or 

splitting words. A finite-state automaton based 

approach proposed by (Hassan et al., 2008) 

models letter mapping probabilities and letter and 

word sequence probabilities.   

Though there are commercial systems that 

perform such denormalization as part of their 

pipelines, the literature is quite scant on 

denormalization. (El-Kholy and Habash, 2010) 

used the MADA analyzer to perform de-

tokenization and denormalization. 

3 Data and Tools 

3.1 Training Data 

In our experiments, we used 8 million Arabic 

sentences, containing 182 million words, from 

Aljazeera.net news articles to train our language 

models. Aljazeera.net has very high editorial 

standards, making spelling mistakes very rare.  

We constructed language models as follows:  

· Word-level models where Arabic text was 

properly tokenized, and all diacritics (short Arabic 

vowels), kashidas (word elongations), and 

numbers were removed.  

· Stem-level models where words were 

stemmed using a statistical stemmer that is akin to 

AMIRA (Mona Diab, 2009). However we did not 

remove both �É p� and �å h� from the end of words 

as they are letters of interest. 

We built our language models using the SRILM 

toolkit with Good-Turing smoothing (Stolcke, 

Andreas, 2002). 

We trained a character-level CRF model using 

5 thousand and 50 thousand sentences. We 

henceforth refer to this model as the �CRFModel�. 

We used the CRF++ implementation (Kudo, 

2009) of CRF for all our experiments.  The 

features that we used for the CRF character-level 

model were as follows: 

· Features 1 to 9: Current letter, preceding 4 

letters and following 4 letters, each as a feature.  

This serves as a character language model. 

· Features 10 and 11: letter bigram features, 

namely the current letter with preceding letter, 

and current letter with following letter. 

· Features 11 to 13: letter trigram features, 

namely current letter with 2 preceding letters, 

current letter with 1 preceding and 1 following 

letter, and current letter with 2 following letters 

· Features 14 to 17: letter 4-gram features 

· Features 18 to 22: letter 5-gram features. 

Features 10-22 further model Arabic letter 

sequences, by attempting to capture common 2, 

3, 4, or 5 letter sequences that may have 

consistent denormalization patterns. For 

example, the sequence �áÇ Al� is most likely a 

determiner that has a single form. 

· Features 23 and 24: position of the letter from 

the beginning and end of a word respectively.  

The output labels of the CRFModel are the proper 

denormalized form of the letter.  For example, in 

case of input �Ç A� the output could be one of the 4 

classes �Å <�, �Ã >�, �Â |� or �Ç A�. in case of input �í 

y� the output could be one of the two classes �í y� 

or �ì Y� and in case of �å h� the output could be 

one of the 2 classes �É p� or �å h�. The output for 

the remaining letters would be �S� (standing for 

same letter).  Thus we had 9 output labels in all. 

3.2 Test Data  

To test the effectiveness of ATD, we used a test 

set of three thousand sentences, containing 
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106,859 words. The test sentences were obtained 

from islamonline.net, an online site, and were 

manually checked for errors.  Testing involved 

attempting to perform ATD on a normalized 

version of the sentences. Around 75% of words 

required denormalization.  Based on the unigram 

word-level model, 0.8%, 41.8%, 34.3%, 7.5% and 

15.6% of the words in the test set have 0, 1, 2, 3 

and more than 3 denormalized forms respectively. 

To test the effectiveness of ATD in the context 

of machine translation, we used a parallel English-

Arabic test set of 4 thousand sentences containing 

36,839 words. We used the Bing online translator 

to perform MT from English to Arabic.  We used 

BLEU with a single reference translation as the 

measure of effectiveness.  We used two baselines, 

namely: the output of the Bing system, where the 

Bing translator performs some sort of ATD, and 

the same output with an additional letter 

normalization step.  In discussions with the team 

that worked on the English to Arabic translation in 

Bing, they indicated that they are using a 

proprietary denormalization component.  

4 ATD Experimental Setups 

We used several experimental setups as follows: 

1. Unigram LM: In this setup, we simply picked 

the most common denormalized form of a word 

regardless of context. If a word is Out Of 

Vocabulary (OOV), meaning not seen in training, 

it is left as is.  We consider this as our baseline 

experiment.  The approach has the following 

disadvantages: 

· It ignores contextual ambiguity. For example, 

though the normalized form /01 Ely has the 

possible denormalized forms: {/01 Ely 

�proper name Ali�, 201 ElY �on�}, the second 

form will consistently be chosen. 

· Coverage is limited by previously seen words. 

2. Unigram Stem LM: Since attached clitics in 

Arabic typically have 1 form, then the stem 

(without prefixes and suffixes) is usually the 

portion of the word that requires denormalization.  

This setup is identical to the Unigram LM, but 

denormalization is done at stem level.  The 

advantage of this approach is that it should have 

better coverage than the Unigram LM.  However, 

it does not take context into account. Also, 

ambiguity is increased, because attached clitics 

often disambiguate the correct denormalized form. 

3. Unigram LM + Unigram Stem LM: In this 

setup, we used the Unigram LM setup for all 

words, and we backed-off to Unigram Stem LM 

for OOV words. This has the effect of increasing 

coverage, while using the disambiguation 

information of clitics.  It still ignores context. 

4. Bigram LM: In this setup, we generated all 

known denormalization of a word, and then we 

used the Viterbi algorithm (bigram model) to 

ascertain the best denormalized form in context.  

OOV words were left unchanged.  This setup uses 

context to pick the best denormalization, but it is 

limited by the previously seen words. 

5. Bigram Stem LM: This is identical to Bigram 

LM, except that the language model is constructed 

on stems and not words. 

6. Bigram LM + Unigram Stem LM: This is 

identical to Bigram LM, but with back-off to the 

Unigram Stem LM.  This accounts for context and 

backs-off to better handle OOV words. 

7. Bigram LM + Bigram Stem LM: This is 

identical to Bigram LM, but with back-off to the 

Bigram Stem LM. 

8. CRF Model: We trained the CRF sequence 

labeler using the aforementioned features.  We 

used the generated CRF model in two ways: 

a. As a back-off to handle OOV words after we 

apply the entire language model based 

approaches.  

b. As a standalone approach that attempts to 

denormalize directly. 

5 ATD Experimental Results 

5.1 Intrinsic ATD Evaluation 

Table 1 reports on the results of using the different 

language modeling based approaches. Table 2 

reports CRFModel as a standalone approach with 

two different data sizes. Table 3 reports on the 

same approaches but with CRF-based back-off for 

OOV words.   
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Not surprisingly, the results show that using a 

bigram language model generally produces 

slightly better accuracy than using a unigram 

model. Using a stem language model helps only 

when being used as back-off and that appears 

clearly for words with more than 1 candidate.  

This can be explained by the fact that attached 

clitics can help disambiguate the correct 

denormalized form. (Results in Table 1 show that 

73.7% of OOV's were unchanged after proper 

denormalization).  

Also not surprisingly Table 2 shows that using 

more data to train CRFModel leads to better 

accuracy. We chose to use the better CRFModel 

combined with the language models to report the 

results in Table 3. Stem and CRF models help in 

handling OOV�s. Table 4 and 5 shows how well 

these models perform on the words that are left 

over from word and stem-level models. The CRF 

model was effective in guessing the proper 

denormalization for more than 87% of the words. 

 
Candidates/word in LM All 0 1 > 1 

% of test data 100 0.8 41.8 57.4 

Setup Accuracy (%) 

1. Unigram LM 98.2 73.7 99.9 97.3 

2. Unigram Stem LM 97.6 86.7 99.6 96.3 

3. Unigram LM + 

Unigram Stem LM 
98.3 86.7 99.9 97.3 

4. Bigram LM 98.9 73.7 99.9 98.4 

5. Bigram Stem LM 98.6 86.4 99.7 97.9 

6. Bigram LM + 

Unigram Stem LM 
99.0 86.7 99.9 98.4 

7. Bigram LM + 

Bigram Stem LM 
99.0 86.4 99.9 98.4 

Table 1: Results of using language modeling for ATD 

 

Candidates/word in LM All 0 1 > 1 

% of test data 100 0.8 41.8 57.4 

Setup Data Accuracy (%) 

8. CRF 

standalone 

5k 95.1 87.5 97.0 93.9 

50k 
97.0 
+1.9 

87.7 
+0.2 

98.2 
+1.2 

96.2 
+2.3 

Table 2: CRFModel w/ training sets of different sizes. 

5.2 ATD Results in MT 

Table 6 reports on the BLEU scores for translating 

4 thousand sentences from English to Arabic and 

then performing denormalization using the 

different approaches. Table 6 reports on two 

baselines.  The first involves not using 

denormalization at all and the other relies on the 

denormalization of Bing online translator system.  

The results show that using our best ATD system 

edges the Bing system, but the difference is not 

statistically significant.  Using CRF model alone 

yields results that are 0.38 BLEU points lower 

than the best system.  This shows that even a 2% 

drop in ATD accuracy may noticeably adversely 

impact translation quality.  When comparing with 

the Bing translation system, which is nearly state-

of-the-art, our proposed ATD system is at par with 

it.  Note that the Bing system has an advantage 

over our proposed system in that the MT system 

does not have OOVs in the denormalization phase 

because it only generates Arabic words that 

appear in training.  
 

Candidates/word in LM All 0 1 > 1 

% of test data 100 0.8 41.8 57.4 

Setup Accuracy (%) 

1. Unigram LM 
98.3 

+0.1 

88.7 

+15.0 
99.9 97.3 

2. Unigram Stem LM 
97.7 

+0.1 

93.0 

+6.3 
99.6 96.3 

3. Unigram LM + 

Unigram Stem LM 

98.4 

+0.1 

93.0 

+6.3 
99.9 97.3 

4. Bigram LM 
99.0 

+0.1 

88.7 

+15.0 
99.9 98.4 

5. Bigram Stem LM 
98.6 

0.0 

92.7 

+6.3 
99.7 97.9 

6. Bigram LM + 

Unigram Stem LM 
99.0 

0.0 
93.0 

+6.3 
99.9 98.4 

7. Bigram LM + 

Bigram Stem LM 

99.0 

0.0 

92.7 

+6.3 
99.9 98.4 

Table 3: Results of using language modeling with CRF 

back-off with relative change over results in Table 1 

 

Setup Coverage (%) Accuracy (%) 

Unigram Stem LM  
54.6 

97.0 

Bigram Stem LM 96.7 

Table 4: Coverage of stem-based models on OOVs  

 

Setup Accuracy (%) 

Word-Based 88.7 

Stem-Based 87.5 

Table 5: Accuracy of CRF model on OOVs of word-

based models and combined stem-based models 
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Denormalizer System 
BLEU 

non-CRF 

BLEU 

w/CRF 

Without ATD 8.78 

Bing Translator 20.79 

Unigram LM 20.75 20.77 

Unigram Stem LM 20.64 20.65 

Unigram + Stem Unigram LMs 20.76 20.77 

Bigram LM 20.80 20.82 

Bigram Stem LM 20.76 20.77 

Bigram + Stem Unigram LMs 20.81 20.82 

Bigram + Stem Bigram LMs 20.81 20.82 

CRF Standalone 20.44 

Table 6: Results for using ATD in MT 

6 Conclusion 

In this paper, we presented different approaches 

for performing automatic denormalization of 

Arabic text to overcome common spelling 

mistakes and to recover from the normalization 

that is typically done while training MT systems 

that translate into Arabic.  The different 

approaches used word language modeling with 

back-off to a stem-based language models and a 

CRF model.  We tested the different approaches 

on naturally occurring Arabic text and we 

evaluated their effectiveness intrinsically and 

extrinsically in the context of MT. The best 

technique according to our experiments is a 

bigram word-level language model with cascaded 

back-off to a unigram stem language model and 

then a CRF model to handle the OOVs. 
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