

228

Proceedings of KONVENS 2012 (Main track: poster presentations), Vienna, September 20, 2012

Statistical Denormalization for Arabic Text

Mohammed Moussa, Mohamed Waleed Fakhr

College of Computing and Information Technology,

Arab Academy for Science and Technology,

Heliopolis, Cairo, Egypt
mohammed.moussa@live.com,

waleedf@aast.edu

Kareem Darwish

Qatar Computing Research Institute,

Qatar Foundation, Doha, Qatar
kdarwish@qf.org.qa

Abstract

In this paper, we focus on a sub-problem of

Arabic text error correction, namely Arabic

Text Denormalization. Text Denormalization

is considered an important post-processing step

when performing machine translation into

Arabic. We examine different approaches for

denormalization via the use of language

modeling, stemming, and sequence labeling.

We show the effectiveness of different

approaches and how they can be combined to

attain better results. We perform intrinsic

evaluation as well as extrinsic evaluation in the

context of machine translation.

1 Introduction

Arabic Text Denormalization (ATD) is considered

a sub-problem of Automated Text Error

Correction (TEC), which is an important topic in

Natural Language Processing (NLP). TEC can be

used in many applications such as OCR error

correction, query-spelling correction, or as pre- or

post- processing for other NLP tasks, such as

Machine Translation (MT). For example, the

training of an MT system that translates between

Arabic and other languages is typically improved

by normalizing some of the Arabic letters that

replace each other depending on context or are

commonly confused by document authors. When

translating into Arabic, these letter normalizations

need to be de-normalized to recover the proper

forms of the letters. We test ATD in the context of

a:

1. Standalone system for correcting common

Arabic mistakes, which are made by users who are

not linguistically proficient or who write casually,

e.g. bloggers, tweeters, etc. It is also helpful for

users who need an automatic system to help them

identify such spelling mistakes.

2. Denormalizing MT output when translating into

Arabic. We evaluated English to Arabic MT

output against properly spelled output and we

achieved a BLEU score of 8.78. Upon inspecting

the output we saw that normalization during

training contributed the most to the low score.

The specific letter normalizations that we will

address in ATD are as follows:

1. Restoring �É p� or �å h� from �å h� at the end of a

word
1
:

Normalized Denormalized

 !" snh !# snp (year); !" snh (his age)

$å% h*h å%$ h*h (this fm.)

2. Restoring �ì Y� or �í y� from �í y� at the end

of a word:

Normalized Denormalized

ì&'æ wHdY í&'æ wHdy (alone 1
st
 person)

ì()* qSwY ì()* qSwY (maximum)

3. Restoring �Å <�, �Ã >�, �Â |� or �Ç A� from �Ç A�:

Normalized Denormalized

Çã+ AslAm Åã+ <slam (Islam)

ÖÑÇ ArD ÖÑÃ >rD (land)

ÊÇ At ÂÊ |t (coming)

á,* qAl á,* qAl (he said)

These constitute normalizations that are

commonly performed for machine translation and

information retrieval. Another less common

normalization entails conflating �Ä &�, �Á '�, and �Æ

}� (Darwish and Ali, 2012).

The problem is that a normalized form of an

Arabic word may be denomalized into multiple

different forms depending on context. For

example, both �äÂ-* qr|n� (Qur�an) and �äÇ-* qrAn�

(marriage) are normalized to �äÇ-* qrAn�.

We used two main approaches to solve the

problem, namely: using language modeling at

word and stem levels; and using Conditional

Random Fields (CRF) sequence labeling to handle

1 We use Buckwalter transliteration throughout the paper

228

Proceedings of KONVENS 2012 (Main track: poster presentations), Vienna, September 20, 2012

229

Proceedings of KONVENS 2012 (Main track: poster presentations), Vienna, September 20, 2012

cases not disambiguated using language modeling.

We also examined the use of a CRF labeler in

isolation of language modeling for comparison.

The main contributions of the paper are:

1. Using stemming in conjunction with language

modeling to improve language modeling

coverage.

2. Treating the ATD problem as a sequence

labeling problem.

3. Using a combined system to achieve a

denormalization accuracy greater than 99%.

2 Related Work

Spelling correction is a well-studied problem

(Kukich, 1992; Manning and Schutz, 1999). The

problem of detecting and correcting misspelled

words in text usually involves finding out-of-

vocabulary words then finding most similar words

in a dictionary using some measure of distance

(Levenshtein, 1966; Wagner and Fisher, 1974).

Heuristic approaches are also used as in (Shaalan

et al., 2003) to find replacement candidates for the

misspelled word by adding or removing letters, or

splitting words. A finite-state automaton based

approach proposed by (Hassan et al., 2008)

models letter mapping probabilities and letter and

word sequence probabilities.

Though there are commercial systems that

perform such denormalization as part of their

pipelines, the literature is quite scant on

denormalization. (El-Kholy and Habash, 2010)

used the MADA analyzer to perform de-

tokenization and denormalization.

3 Data and Tools

3.1 Training Data

In our experiments, we used 8 million Arabic

sentences, containing 182 million words, from

Aljazeera.net news articles to train our language

models. Aljazeera.net has very high editorial

standards, making spelling mistakes very rare.

We constructed language models as follows:

· Word-level models where Arabic text was

properly tokenized, and all diacritics (short Arabic

vowels), kashidas (word elongations), and

numbers were removed.

· Stem-level models where words were

stemmed using a statistical stemmer that is akin to

AMIRA (Mona Diab, 2009). However we did not

remove both �É p� and �å h� from the end of words

as they are letters of interest.

We built our language models using the SRILM

toolkit with Good-Turing smoothing (Stolcke,

Andreas, 2002).

We trained a character-level CRF model using

5 thousand and 50 thousand sentences. We

henceforth refer to this model as the �CRFModel�.

We used the CRF++ implementation (Kudo,

2009) of CRF for all our experiments. The

features that we used for the CRF character-level

model were as follows:

· Features 1 to 9: Current letter, preceding 4

letters and following 4 letters, each as a feature.

This serves as a character language model.

· Features 10 and 11: letter bigram features,

namely the current letter with preceding letter,

and current letter with following letter.

· Features 11 to 13: letter trigram features,

namely current letter with 2 preceding letters,

current letter with 1 preceding and 1 following

letter, and current letter with 2 following letters

· Features 14 to 17: letter 4-gram features

· Features 18 to 22: letter 5-gram features.

Features 10-22 further model Arabic letter

sequences, by attempting to capture common 2,

3, 4, or 5 letter sequences that may have

consistent denormalization patterns. For

example, the sequence �áÇ Al� is most likely a

determiner that has a single form.

· Features 23 and 24: position of the letter from

the beginning and end of a word respectively.

The output labels of the CRFModel are the proper

denormalized form of the letter. For example, in

case of input �Ç A� the output could be one of the 4

classes �Å <�, �Ã >�, �Â |� or �Ç A�. in case of input �í

y� the output could be one of the two classes �í y�

or �ì Y� and in case of �å h� the output could be

one of the 2 classes �É p� or �å h�. The output for

the remaining letters would be �S� (standing for

same letter). Thus we had 9 output labels in all.

3.2 Test Data

To test the effectiveness of ATD, we used a test

set of three thousand sentences, containing

229

Proceedings of KONVENS 2012 (Main track: poster presentations), Vienna, September 20, 2012

230

Proceedings of KONVENS 2012 (Main track: poster presentations), Vienna, September 20, 2012

106,859 words. The test sentences were obtained

from islamonline.net, an online site, and were

manually checked for errors. Testing involved

attempting to perform ATD on a normalized

version of the sentences. Around 75% of words

required denormalization. Based on the unigram

word-level model, 0.8%, 41.8%, 34.3%, 7.5% and

15.6% of the words in the test set have 0, 1, 2, 3

and more than 3 denormalized forms respectively.

To test the effectiveness of ATD in the context

of machine translation, we used a parallel English-

Arabic test set of 4 thousand sentences containing

36,839 words. We used the Bing online translator

to perform MT from English to Arabic. We used

BLEU with a single reference translation as the

measure of effectiveness. We used two baselines,

namely: the output of the Bing system, where the

Bing translator performs some sort of ATD, and

the same output with an additional letter

normalization step. In discussions with the team

that worked on the English to Arabic translation in

Bing, they indicated that they are using a

proprietary denormalization component.

4 ATD Experimental Setups

We used several experimental setups as follows:

1. Unigram LM: In this setup, we simply picked

the most common denormalized form of a word

regardless of context. If a word is Out Of

Vocabulary (OOV), meaning not seen in training,

it is left as is. We consider this as our baseline

experiment. The approach has the following

disadvantages:

· It ignores contextual ambiguity. For example,

though the normalized form /01 Ely has the

possible denormalized forms: {/01 Ely

�proper name Ali�, 201 ElY �on�}, the second

form will consistently be chosen.

· Coverage is limited by previously seen words.

2. Unigram Stem LM: Since attached clitics in

Arabic typically have 1 form, then the stem

(without prefixes and suffixes) is usually the

portion of the word that requires denormalization.

This setup is identical to the Unigram LM, but

denormalization is done at stem level. The

advantage of this approach is that it should have

better coverage than the Unigram LM. However,

it does not take context into account. Also,

ambiguity is increased, because attached clitics

often disambiguate the correct denormalized form.

3. Unigram LM + Unigram Stem LM: In this

setup, we used the Unigram LM setup for all

words, and we backed-off to Unigram Stem LM

for OOV words. This has the effect of increasing

coverage, while using the disambiguation

information of clitics. It still ignores context.

4. Bigram LM: In this setup, we generated all

known denormalization of a word, and then we

used the Viterbi algorithm (bigram model) to

ascertain the best denormalized form in context.

OOV words were left unchanged. This setup uses

context to pick the best denormalization, but it is

limited by the previously seen words.

5. Bigram Stem LM: This is identical to Bigram

LM, except that the language model is constructed

on stems and not words.

6. Bigram LM + Unigram Stem LM: This is

identical to Bigram LM, but with back-off to the

Unigram Stem LM. This accounts for context and

backs-off to better handle OOV words.

7. Bigram LM + Bigram Stem LM: This is

identical to Bigram LM, but with back-off to the

Bigram Stem LM.

8. CRF Model: We trained the CRF sequence

labeler using the aforementioned features. We

used the generated CRF model in two ways:

a. As a back-off to handle OOV words after we

apply the entire language model based

approaches.

b. As a standalone approach that attempts to

denormalize directly.

5 ATD Experimental Results

5.1 Intrinsic ATD Evaluation

Table 1 reports on the results of using the different

language modeling based approaches. Table 2

reports CRFModel as a standalone approach with

two different data sizes. Table 3 reports on the

same approaches but with CRF-based back-off for

OOV words.

230

Proceedings of KONVENS 2012 (Main track: poster presentations), Vienna, September 20, 2012

231

Proceedings of KONVENS 2012 (Main track: poster presentations), Vienna, September 20, 2012

Not surprisingly, the results show that using a

bigram language model generally produces

slightly better accuracy than using a unigram

model. Using a stem language model helps only

when being used as back-off and that appears

clearly for words with more than 1 candidate.

This can be explained by the fact that attached

clitics can help disambiguate the correct

denormalized form. (Results in Table 1 show that

73.7% of OOV's were unchanged after proper

denormalization).

Also not surprisingly Table 2 shows that using

more data to train CRFModel leads to better

accuracy. We chose to use the better CRFModel

combined with the language models to report the

results in Table 3. Stem and CRF models help in

handling OOV�s. Table 4 and 5 shows how well

these models perform on the words that are left

over from word and stem-level models. The CRF

model was effective in guessing the proper

denormalization for more than 87% of the words.

Candidates/word in LM All 0 1 > 1

% of test data 100 0.8 41.8 57.4

Setup Accuracy (%)

1. Unigram LM 98.2 73.7 99.9 97.3

2. Unigram Stem LM 97.6 86.7 99.6 96.3

3. Unigram LM +

Unigram Stem LM
98.3 86.7 99.9 97.3

4. Bigram LM 98.9 73.7 99.9 98.4

5. Bigram Stem LM 98.6 86.4 99.7 97.9

6. Bigram LM +

Unigram Stem LM
99.0 86.7 99.9 98.4

7. Bigram LM +

Bigram Stem LM
99.0 86.4 99.9 98.4

Table 1: Results of using language modeling for ATD

Candidates/word in LM All 0 1 > 1

% of test data 100 0.8 41.8 57.4

Setup Data Accuracy (%)

8. CRF

standalone

5k 95.1 87.5 97.0 93.9

50k
97.0
+1.9

87.7
+0.2

98.2
+1.2

96.2
+2.3

Table 2: CRFModel w/ training sets of different sizes.

5.2 ATD Results in MT

Table 6 reports on the BLEU scores for translating

4 thousand sentences from English to Arabic and

then performing denormalization using the

different approaches. Table 6 reports on two

baselines. The first involves not using

denormalization at all and the other relies on the

denormalization of Bing online translator system.

The results show that using our best ATD system

edges the Bing system, but the difference is not

statistically significant. Using CRF model alone

yields results that are 0.38 BLEU points lower

than the best system. This shows that even a 2%

drop in ATD accuracy may noticeably adversely

impact translation quality. When comparing with

the Bing translation system, which is nearly state-

of-the-art, our proposed ATD system is at par with

it. Note that the Bing system has an advantage

over our proposed system in that the MT system

does not have OOVs in the denormalization phase

because it only generates Arabic words that

appear in training.

Candidates/word in LM All 0 1 > 1

% of test data 100 0.8 41.8 57.4

Setup Accuracy (%)

1. Unigram LM
98.3

+0.1

88.7

+15.0
99.9 97.3

2. Unigram Stem LM
97.7

+0.1

93.0

+6.3
99.6 96.3

3. Unigram LM +

Unigram Stem LM

98.4

+0.1

93.0

+6.3
99.9 97.3

4. Bigram LM
99.0

+0.1

88.7

+15.0
99.9 98.4

5. Bigram Stem LM
98.6

0.0

92.7

+6.3
99.7 97.9

6. Bigram LM +

Unigram Stem LM
99.0

0.0
93.0

+6.3
99.9 98.4

7. Bigram LM +

Bigram Stem LM

99.0

0.0

92.7

+6.3
99.9 98.4

Table 3: Results of using language modeling with CRF

back-off with relative change over results in Table 1

Setup Coverage (%) Accuracy (%)

Unigram Stem LM
54.6

97.0

Bigram Stem LM 96.7

Table 4: Coverage of stem-based models on OOVs

Setup Accuracy (%)

Word-Based 88.7

Stem-Based 87.5

Table 5: Accuracy of CRF model on OOVs of word-

based models and combined stem-based models

231

Proceedings of KONVENS 2012 (Main track: poster presentations), Vienna, September 20, 2012

232

Proceedings of KONVENS 2012 (Main track: poster presentations), Vienna, September 20, 2012

Denormalizer System
BLEU

non-CRF

BLEU

w/CRF

Without ATD 8.78

Bing Translator 20.79

Unigram LM 20.75 20.77

Unigram Stem LM 20.64 20.65

Unigram + Stem Unigram LMs 20.76 20.77

Bigram LM 20.80 20.82

Bigram Stem LM 20.76 20.77

Bigram + Stem Unigram LMs 20.81 20.82

Bigram + Stem Bigram LMs 20.81 20.82

CRF Standalone 20.44

Table 6: Results for using ATD in MT

6 Conclusion

In this paper, we presented different approaches

for performing automatic denormalization of

Arabic text to overcome common spelling

mistakes and to recover from the normalization

that is typically done while training MT systems

that translate into Arabic. The different

approaches used word language modeling with

back-off to a stem-based language models and a

CRF model. We tested the different approaches

on naturally occurring Arabic text and we

evaluated their effectiveness intrinsically and

extrinsically in the context of MT. The best

technique according to our experiments is a

bigram word-level language model with cascaded

back-off to a unigram stem language model and

then a CRF model to handle the OOVs.

References

A. El-Kholy and N. Habash. 2010. Techniques for

Arabic morphological detokenization and

orthographic denormalization. In Proceedings of

Language Resources and Evaluation Conference

(LREC)

A. Hassan, S. Noeman and H. Hassan. 2008. Language

independent text correction using !nite state

automata. In Proceedings of the International Joint

Conference on Natural Language Processing

(IJCNLP).

A. Stolcke. 2002. SRILM � an extensible language

modeling toolkit. In Proceedings of the International

Conference on Spoken Language Processing.

C.D. Manning and H. Schütze. 1999. Foundations of

Statistical Natural Language Processing. MIT

Press.

K. Darwish and A. Ali. 2012. Arabic Retrieval

Revisited: Morphological Hole Filling. The

Association of Computational Linguistics (ACL)

K. Kukich. 1992. Techniques for automatically

correcting word in text. ACM Computing Surveys.

K. Shaalan, A. Allam and A. Gomah. 2003. Towards

Automatic Spell Checking for Arabic. In

Proceedings of the 4
th

 Conference on Language

Engineering, Egyptian Society of Language

Engineering (ELSE).

M. Diab. 2009. Second generation tools (AMIRA 2.0):

Fast and robust tokenization, pos tagging, and base

phrase chunking. In Proceedings of 2nd

International Conference on Arabic Language

Resources and Tools (MEDAR), Cairo, Egypt

R.A. Wagner and M.J. Fischer. 1974. The String-to-

String Correction Problem. Journal of the ACM

T. Kudo. 2009. CRF++: Yet another CRF toolkit.

http://crfpp.sourceforge.net.

V.I. Levenshtein. 1966. Binary codes capable of

correcting deletions, insertions, and reversals.

Soviet Physics Doklady.

232

Proceedings of KONVENS 2012 (Main track: poster presentations), Vienna, September 20, 2012

